A Hölder type inequality for symmetric matrices with nonnegative entries

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a cauchy-schwarz type inequality for fuzzy integrals

نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.

15 صفحه اول

On Reduced Rank Nonnegative Matrix Factorization for Symmetric Nonnegative Matrices

Let V ∈ R be a nonnegative matrix. The nonnegative matrix factorization (NNMF) problem consists of finding nonnegative matrix factors W ∈ R and H ∈ R such that V ≈ WH. Lee and Seung proposed two algorithms which find nonnegative W and H such that ‖V −WH‖F is minimized. After examining the case in which r = 1 about which a complete characterization of the solution is possible, we consider the ca...

متن کامل

Hölder continuity of a parametric variational inequality

‎In this paper‎, ‎we study the Hölder continuity of solution mapping to a parametric variational inequality‎. ‎At first‎, ‎recalling a real-valued gap function of the problem‎, ‎we discuss the Lipschitz continuity of the gap function‎. ‎Then under the strong monotonicity‎, ‎we establish the Hölder continuity of the single-valued solution mapping for the problem‎. ‎Finally‎, ‎we apply these resu...

متن کامل

Wielandt's proof of the exponent inequality for primitive nonnegative matrices

The proof of the exponent inequality found in Wielandt's unpublished diaries of a result announced without proof in his well known paper on nonnegative irreducible matrices. A facsimile, a transcription, a translation and a commentary are presented. © 2002 Published by Elsevier Science Inc. . In IDS famous paper [3] on nonnegative irreducible matrices published in 1950, Wielandt announced an in...

متن کامل

Bounds for Levinger’s function of nonnegative almost skew-symmetric matrices

The analysis of the Perron eigenspace of a nonnegative matrix A whose symmetric part has rank one is continued. Improved bounds for the Perron root of Levinger’s transformation (1 − α)A+ αAt (α ∈ [0, 1]) and its derivative are obtained. The relative geometry of the corresponding left and right Perron vectors is examined. The results are applied to tournament matrices to obtain a comparison resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1965

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1965-0184950-9